METHODS FOR PARAMETER RANKING IN NONLINEAR, MECHANISTIC MODELS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter ranking by orthogonalization - Applied to nonlinear mechanistic models

The paper addresses methods for parameter sensitivity analysis in a large, nonlinear, mechanistic model which is to be run in an online estimation scheme. The parameter sensitivity has been obtained by numeric approximation. The paper proposes and applies successive orthogonalization of the sensitivity derivative for parameter ranking. The method is easy to implement and the results are easily ...

متن کامل

Parameter estimation for nonlinear dynamical adjustment models

A recursive generalized least squares algorithm and a filtering based least squares algorithm are developed for input nonlinear dynamical adjustment models with memoryless nonlinear blocks followed by linear dynamical blocks. The basic idea is to use the filtering technique and to replace the unknown terms in the information vectors with their estimates. The simulation results show the performa...

متن کامل

Solution Methods for Nonlinear Models¤

Economic models are used for many purposes, including forecasting and simulation. Economic models are generally nonlinear. Even simple macroeconomic models, where all the stochastic equations in the system may be linear in logarithms, need to be completed by accounting identities that are linear in levels. As a consequence, although a model may be estimated using linear techniques, forecasts wi...

متن کامل

Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models

Stochastic nonlinear state-space models (SSMs) are prototypical mathematical models in geoscience. Estimating unknown parameters in nonlinear SSMs is an important issue for environmental modeling. In this paper, we present two recently developed methods that are based on the sequential Monte Carlo (SMC) method for parameter estimation in nonlinear SSMs. The first method, which belongs to classi...

متن کامل

Parameter estimation in nonlinear AR - GARCH models

This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a general nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. We do not require the rescaled errors to be ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 2005

ISSN: 1474-6670

DOI: 10.3182/20050703-6-cz-1902.00097